
Project: Enigma Machine and
Turing-Welchman Bombe

Maria Camila REMOLINA GUTIÉRREZ
maria.remolina gutierrez@telecom-sudparis.eu

Advisor: Prof. Eric RENAULT

June 19, 2019

Abstract

This is the work proposal to follow in the course Project as part of the master
M1 in Computer Science and Communication Networks at Télécom SudParis.
The goal is to implement the Enigma machine used in World War II, followed by
the Bombe machine that breaks the cipher, created by Alan Turing and Gordon
Welchman at Bletchley Park.

1 Introduction

The enigma machine is a cipher machine used by the Nazi Germany during World War
II in order to send secret coded messages. It was initially a commercial machine bought
by banks are businesses. But then the military took it and added an extra security
layer called plugboard. It was innovative at the time because it was not a substitution
cipher, i.e. the same letter can get different results after encryption.

The machine works by a combination of moving rotors and inside wiring as seen in
Fig. 1. The way to use it is that when the sender types a message, a bulb lights up
indicating the correspondent coded letter. Then, in order to decode, the receiver types
the coded message he received and the initial message lights up on the board. In war
times the coded messages were transmitted over morse code.

In the military version of the Enigma Machine there were 5 possible rotors to pick
from, each with 26 possible positions, then there were 10 possible switching in the
plugboard that could choose a pair from the available 26 letters. That accounts for
158962555217826360000 different combinations for the setting of the army Enigma Ma-
chine [2]. The initial setting for each day was given to the bases in a sheet of paper that

1

Figure 1: Enigma Machine - Military Edition

had the monthly configurations of the machine. So they changed the setting everyday.

So in order to decipher the code, you needed either to have the code sheet or to
break the message. This latter was what the scientists at Bletchley Park did; and what
I will try to recreate in this project.

2 General Goal

To understand the code breaking process behind the enigma cipher.

3 Specific Goals

• To implement the Enigma machine with software

• To implement the Bombe machine that breaks the Enigma cipher

• To understand the mathematical and probabilistic techniques used to break a
cipher with limited time and computational resources.

2

• To understand the weaknesses exploited that allowed to break the Enigma cipher

4 Implementation

I implemented a project in the Python programming language that replicates both the
Enigma Machine and the Bombe Machine. I explain in the following subsections the
details of each of them.

4.1 Enigma Machine

There are different models of the Enigma machine that were developed through time.
In this project I chose one of the latest, i.e. with more complicated settings. This is
the model M3 & M4 Naval (from Frebuary 1942) that has 8 possible rotors [8, 9].

4.1.1 Enigma’s algorithm

The enigma machine consists on a set of physical connections that allow electrical signals
to travel through inner cross wirings that move place every time a key is pressed. In the
most simple form we could express that any typed key in the keyboard is transformed
to another letter that lights up in the bulbs panel. So we could say:

SIGNALOUT = P(S(P(SIGNALIN)))

S(SIGNAL) = R1(R2(R3(F(R3(R2(R1(SIGNAL)))))))

Where P represents the Plugboard; S represents the Set of rotors an reflectors;
Ri represents the i-th rotor (in this case there are 3 but there could be more); and
F represents the reflector. All of this process can be graphically understood with the
image below (Fig. 2):

Figure 2: Enigma Machine Wiring

3

The machine has a symmetric property so in order to decipher the message one has
to put the same rotor settings as when the person typing the message started. So this
leads us to the configuration of the machine, i.e. the input.

4.1.2 Input

The machine has different settings that changed each day and that were communicated
via code sheets like the one in Fig. 3.

Figure 3: Enigma Machine Wiring

I handle this as a configuration text file in my implementation. I will describe the
components as follows:

• Rotor selection and order: Depending on the machine there are up to 8 different
rotors (I-VIII) from which to choose 3 or 4. So an input is which of them and in
which permutation from left to right. Example - V IV I.

• Rotor’s ring settings (Ringstellung): Within each rotor there is an internal ring
that maps position to a letter, but it can be switched so that the internal wiring
mapping is offset. Example - N D V.

• Rotor’s initial positions (Grundstellung): Within the machine, when locating the
rotors, they have to be in a particular initial position. This is achieved by inserting
the rotor and turning it to the respective starting point. Example: D Y A.

4

• Plugboard pairs: This corresponds to the symmetric correspondence of letters in
the other plugboard panel. They are typically 10 pairs.

• Reflector selection: As with the rotors, there are 4 different reflectors from which
to choose, all with different cross-connections.

Apart from all of these values that changes from user to user, I also have an input
configuration file that loads the historically accurate wiring of each reflector and rotor.
For the rotors there is an additional parameter called the turnover point. The rotors
work as a clock in the way they rotate. The right-most represent the second, the middle
the minutes, and the left-most the hours. However they don’t turn all in the same letter
(’Z’ as one would expect), they all each have their own turnover point that triggers its
right partner rotation. Those turnovers are obtained from [6]. Finally the message to
cipher is also input as a text file.

4.1.3 Processing

As for the processing of the plain text, here is a pseudo code with the simplified process:

for l e t t e r in t ex t :

advance r o t o r s accord ing to t h e i r own p o s i t i o n ,
and turnover p o i n t s
s t e p r o t o r s ()

enter p lugboard switch , i f no correspondance t h e r e
i s no connect ion , so l e t t e r doesn ’ t change
p l u g b o a r d l e t t e r = plugboard . get (l e t t e r , l e t t e r)

enter r o t o r s (inwards − r i g h t to l e f t)
r o to r names inve r t ed = rotor names [: : −1]
p i n i n = ALPHABET. index (p l u g b o a r d l e t t e r)

for rotor name in r o to r names inve r t ed :
r o t o r = r o t o r s [rotor name]
p i n i n = ro to r . p roce s s inwards (p i n i n)

enter r e f l e c t o r
p in out = r e f l e c t o r . r e f l e c t (p i n i n)

enter r o t o r s (outwards − l e f t to r i g h t)
for rotor name in rotor names :

5

r o t o r = r o t o r s [rotor name]
p in out = ro to r . proces s outwards (p in out)

enter p lugboard s w i t c h
r o t o r l e t t e r = ALPHABET[p in out]

c a l c u l a t e c i p h e r e d l e t t e r
c i p h e r e d l e t t e r = plugboard . get (r o t o r l e t t e r ,

r o t o r l e t t e r)

Somethings to be aware of in the processing are that the rotors step before ciphering,
not after. Also, the turnover points need to be checked each time the rotors step, some
of them even have 2 different turnovers.

4.1.4 Output

The output of the machine is straightforward, it correspond to the cipher letter of each
key press after going through the transformations. And for a whole text is just the
concatenation of those letters. If this output is to be typed again in the machine with
the same initial configuration, the operator on the other side of the line will obtain the
original plain message.

4.1.5 Challenges

The biggest challenge in implementing the Enigma machine is knowing exactly how it
worked. Even thought there is a great amount of information online, the depth of it is
not that significant. Most of the resources tend to shallowly explain the behavior but
there are several subtleties and details that were hard to find. I put in the references
the most trustworthy and complete information I found on the matter [3, 4, 5, 6, 7, 10].

Another challenge was the translation of this information, because the original ma-
chine settings are in German. This implies that there are multiple acceptable transla-
tions for several parts of the machine that might be opposite among different sources.
A concrete example of this goes within the rotor, where there are 2 different settings
called Ringstellung and Grundstellung. They refer to the ring setting within each the
rotor and to the ground setting or offset of the rotor within the machine, respectively.
However figuring out which one was which presented a problem because different sources
referred to them by different names, sometimes even opposite. So I had to solve this
by recurring to the German words.

Finally, I would like to refer as well to different simulators that are found on the
internet in which I could get a phenomenological understanding of the machine. I was
able to try out different configurations and learning its way to function. I also confirmed

6

my solution against these simulators in order to test my implementation. This was a
positive match.

• Cryptii Simulator: https://cryptii.com/pipes/enigma-machine

• Louise Dade Simulator: http://enigma.louisedade.co.uk/enigma.html

4.2 Bombe Machine

4.2.1 Enigma Exploits

In order to break the enigma, mathematicians Alan Turing and Gordon Welchman,
with the collaboration of the staff at Bletchley Park, design the Bombe Machine. It
exploited the Enigma Machine’s flaws to crack the Nazi’s communications. However,
the machine itself was not all, it exploited behavioral patterns in the communication
as well. Here I list the main weaknesses that lead to deciphering the Enigma:

• The biggest flaw of the Enigma Machine is that because of the internal wiring
and design, a letter can never be encrypted to itself. This opened the door to
cryptoanalysts to locate possible message deciphers. [11]

• Another breakthrough was when they realized about specific patterns that would
repeat themselves in a conversation. For example the daily weather forecast, the
heil Hitler salute, or war jargon. These parts of the conversation tipically followed
a standard format that allows to create ”cribs”, an intelligent guess of part of the
code. [12]

• In addition to the previous facts, sometimes reckless operators forgot to change
the daily settings, which lower the odds of combinations and gave more data to
the analysts.

4.2.2 Bombe’s algorithm

So the idea of the Bombe is to try have several enigma machines in parallel (as seen in
Fig. 4), each one testing its own setting, but in a smart and optimizing manner. Utiliz-
ing all the previous known exploits, as well as mathematical inferences and principles
of conditional sequential bayesian probability.

To begin we need a crib, that is a message and its most-likely cipher. This was
obtained by comparing the common phrases and finding where in the cipher text no
letter maps to itself. With the crib we create then a hypothesis called a menu, an
analog of a computer program for the Bombe. The menu represents a graph where
each links connects 2 nodes that can be translated to each other via the enigma, in that
particular position. Fig 5 displays what the crib and map would be for our example in
the project.

7

https://cryptii.com/pipes/enigma-machine
http://enigma.louisedade.co.uk/enigma.html

Figure 4: Bombe Machine at Bletchley Park

Figure 5: Bombe Map Graph

8

Now we need to find an enigma configuration that corresponds to the menu, and
here is where the plugboard comes into place. The Bombe starts by taking a letter of
the graph, called input and making a guess of its corresponding pair in the plugboard
(ex: P (T) = A). From there, it starts to follow the paths on the graph, specially the
loops, and starts finding that the guess implies other connections in the board. If we
end up with a contradiction then our guess is wrong and we move to the next guess. If
by the end all the guesses are wrong, then the rotor configuration is wrong.

Alan Turing was able to decrease the time by proving that if the Bombe finds a con-
tradiction, then all the previous guesses are also wrong, so the machine doesn’t have to
check them again. He also design the machine so that the circuits could calculate the
correspondences immediately.

Let’s look at an example of one of these possible deductions:

1. I suppose P (T) = A

2. I know that M = P (S0(P (T))) because of the crib

3. As P is symmetrical, I can apply it to both sides so P (M) = S0(P (T))

4. Using my guess I find that P (M) = S0(A)

5. According to my enigma replica, that is P (M) = F , so now I have another
plugboard setting.

6. Following the loop and doing the same operations, I find that I = P (S6(P (M)))

7. Applying P on both sides P (I) = S6(P (M))

8. Using the previously found setting P (I) = S6(F)

9. Using the enigma machine P (I) = Y , and that is my third plugboard setting

10. Now to close the loop I also know that T = P (S14(P (I)))

11. Applying P on both sides P (T) = S14(P (I))

12. Using the plugboard P (T) = S14(Y)

13. Using the enigma machine P (T) = K, BUT here lies a problem, I guessed P (T) =
A so I found a contradiction

Here all the previous guesses are now invalid for the current rotor configuration and
I have to go to the next guess and repeat. As seen in the example, and proved my
Alan Turing, the most loops the easier it is to find contradictions, i.e. the less possible

9

Figure 6: Estimated number of bombe stops per rotor order

plugboards to check. Here is a table (Fig. 6)that shows this relation [14].

Now, when a plugboard is consistent it becomes a candidate and it was then checked
by hand at the park.

4.2.3 Input

I handle the input as a configuration text file in my implementation. I will describe the
components as follows:

• Crib: The piece of text plain and ciphered that was selected as a candidate by
the staff.

• Menu paths: The menu paths in the order that the program will follow, and create
the deductions. It starts with the input letter and it it preferable to have all the
loops at first, in order to reject combinations faster.

• Rotor’s selection and order: This because the Bombe runs several rotor combina-
tions in parallel, so in my implementation I input the rotors. They had several
Bombes working at the same time as well.

• Initial rotor ring settings and reflector: This is for simplicity of the program.
Again, in the big Bombe all the combinations are tested.

4.2.4 Processing

The processing implements all the algorithm explained before within the function
run(). It is important to remark the high use of Python dictionaries (i.e. hash tables) as
a data structure. They make the access to the plugboards and settings straightforward,
as opposed to searching on a list.

10

4.2.5 Output

The output of the machine is all the possible plugboards associated to each rotor config-
uration. This is output to a file that was then checked by the staff. They translated the
message using those configurations and see which one made sense. From the example
we can see that the program outputs DZR and the plugboard that the machine used
to cipher. So it cracked it.

4.2.6 Challenges

As well as for the Enigma, the biggest challenge in implementing the Bombe machine
is knowing exactly how it worked. As opposed to Enigma that was a commercial ma-
chine and that had over 100000 replicas, the Bombe information was kept secret for a
very long time. There are no more than 200 Bombes in the world and less than 5 are
rebuilt and operational. Most of the information for the plans was kept classified until
2010, not even 10 years ago. So it was very challenging to get to the nuts and bolts of
the apparatus. However, when combining all the reliable sources I was able to make
this compendium and to understand how it worked. I put in the references the most
trustworthy and complete information [10, 14, 15, 16, 17, 18, 19, 20].

Another remark that also opposes to the Enigma is the lenght of the Bombe. There
are much more steps deductions and in general code that needs to be written. While
implementing it, it is evident why the Bombe was so much more complicated, expensive
and large.

Finally, and as in the previous machine, I got some insights from two Bombe simu-
lators online. However as the is very complex, using them is not as straightforward and
required a lot of learning. After all, each bomb had several operators. So I just had a
glimpse on their configuration files, specially the menu input. Here are the references:

• Magnus Ekhall & Fredrik Hallenberg Simulator: http://www.lysator.liu.se/

~koma/turingbombe/ [13]

• 101 Computing Simulator: https://www.101computing.net/turing-welchman-
bombe/

4.3 Code

All of the algorithms, inputs, outputs and processing were coded in Python. The code
of both machines is available in the project attached to this report. The structure can
be seen in Fig. 7.

11

http://www.lysator.liu.se/~koma/turingbombe/
http://www.lysator.liu.se/~koma/turingbombe/
https://www.101computing.net/turing-welchman-bombe/
https://www.101computing.net/turing-welchman-bombe/

Figure 7: Code Structure

There is a program called example.py that shows how to use the programs and when
executed, outputs the result of both enigma and bombe machines to their respective
results files. It also outputs to console like Fig. 8.

Figure 8: Example Code Standard Output

12

5 Conclusions

From this project I was able to make the following conclusions and achievements:

• I was able to understand to a deep level and to replicate the code ciphering and
code breaking process behind the Enigma and Bombe machines. I am personally
amazed by the ability of cryptoanalysts to find a door to break what everyone
thought was impossible.

• I was able to understand the effect of mathematics in this particular case. I un-
derstood the probabilites and the deduction techniques in order to find a viable
solution. This is in my opinion one of the most relevant examples in history
were mathematicians can save lives. It’s just another proof that research in ba-
sic sciences are the foundation for application way beyond the current scope of
humanity.

• I was able to understand than even though deciphering the message was a very
hard task, in order to win the war you needed much more. There were a lot of
difficult decisions that had to be made so that the Nazis didn’t realize the machine
was cracked. A lot of lives that were sacrificed on purpose in order to win. The
strategy goes beyond the cipher.

• I conclude that is by implementing that you deeply understand something. I had
and idea about the machines, but it is when trying to replicate them that you
start to see all the subtleties, details and complexities that rely within. This was
a very fructiferous project to make.

5.1 Future Work

The future work I would like to perform after this class is to improve the Bombe so that
it runs in parallel (just as the machines at Bletchley Park). I would like to learn deeper
about the physical wirings and connections inside the Bombe that made it so fast.
Then, it would be really interesting to create a physical system with current electronics
and compare the times.

References

[1] A. Hodges. Alan Turing: The Enigma. Princeton, N.J: Princeton University Press
(2012).

[2] Numberphile. 158,962,555,217,826,360,000 (Enigma Machine). YouTube (2013).

[3] D. Rijmenants. Technical Details of the Enigma Machine. Obtained from: http:

//users.telenet.be/d.rijmenants/en/enigmatech.htm

13

http://users.telenet.be/d.rijmenants/en/enigmatech.htm
http://users.telenet.be/d.rijmenants/en/enigmatech.htm

[4] T. Sale. Military Use of the Enigma. Obtained from: https://www.

codesandciphers.org.uk/enigma/enigma3.htm

[5] Cryptomuseum. Enigma Cipher Machines. Obtained from: https://www.

cryptomuseum.com/crypto/enigma/index.htm

[6] Wikipedia. Enigma Machine. Obtained from: https://en.wikipedia.org/wiki/
Enigma_machine

[7] Wikipedia. Cryptanalysis of the Enigma. Obtained from: https://en.wikipedia.
org/wiki/Cryptanalysis_of_the_Enigma

[8] L. Dade. Enigma Machine: How It Works. Obtained from: http://enigma.

louisedade.co.uk/howitworks.html

[9] Wikipedia. Enigma Rotor Details. Obtained from: https://en.wikipedia.org/

wiki/Enigma_rotor_details

[10] G. Ellsbury. The Enigma and The Bombe. Obtained from: http://www.ellsbury.
com/enigmabombe.htm

[11] Numberphile. Flaw in the Enigma Code. YouTube (2013).

[12] Computerphile. Tackling Enigma (Turing’s Enigma Problem). YouTube (2013).

[13] M. Ekhall, F. Hallenberg. US Navy Cryptanalytic Bombe - A Theory of Opera-
tion and Computer Simulation. Proceedings of the 1st Conference on Historical
Cryptology, pages 103-108, Uppsala, Sweden, 18-20 June, 2018.

[14] Wikipedia. Bombe. Obtained from: https://en.wikipedia.org/wiki/Bombe

[15] Le Blob. La ”bombe” de Turing : vers le décryptage industriel. YouTube (2017).

[16] 101 Computing. Enigma Crib Analysis. Obtained from: https://www.

101computing.net/enigma-crib-analysis/

[17] T. Sale. Virtual Wartime Bletchley Park. Obtained from: http://www.

codesandciphers.org.uk/virtualbp/tbombe/tbombe.htm

[18] F. Carter. The Turing Bombe. Rutherford Journal. Obtained from: http://www.

rutherfordjournal.org/article030108.html

[19] M. Oberzalek. Breaking the Enigma. Obtained from: http://www.mlb.co.jp/

linux/science/genigma/enigma-referat/node6.html

[20] Wikipedia. Banburismus. Obtained from: https://en.wikipedia.org/wiki/

Banburismus

14

https://www.codesandciphers.org.uk/enigma/enigma3.htm
https://www.codesandciphers.org.uk/enigma/enigma3.htm
https://www.cryptomuseum.com/crypto/enigma/index.htm
https://www.cryptomuseum.com/crypto/enigma/index.htm
https://en.wikipedia.org/wiki/Enigma_machine
https://en.wikipedia.org/wiki/Enigma_machine
https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma
https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma
http://enigma.louisedade.co.uk/howitworks.html
http://enigma.louisedade.co.uk/howitworks.html
https://en.wikipedia.org/wiki/Enigma_rotor_details
https://en.wikipedia.org/wiki/Enigma_rotor_details
http://www.ellsbury.com/enigmabombe.htm
http://www.ellsbury.com/enigmabombe.htm
https://en.wikipedia.org/wiki/Bombe
https://www.101computing.net/enigma-crib-analysis/
https://www.101computing.net/enigma-crib-analysis/
http://www.codesandciphers.org.uk/virtualbp/tbombe/tbombe.htm
http://www.codesandciphers.org.uk/virtualbp/tbombe/tbombe.htm
http://www.rutherfordjournal.org/article030108.html
http://www.rutherfordjournal.org/article030108.html
http://www.mlb.co.jp/linux/science/genigma/enigma-referat/node6.html
http://www.mlb.co.jp/linux/science/genigma/enigma-referat/node6.html
https://en.wikipedia.org/wiki/Banburismus
https://en.wikipedia.org/wiki/Banburismus

	Introduction
	General Goal
	Specific Goals
	Implementation
	Enigma Machine
	Enigma's algorithm
	Input
	Processing
	Output
	Challenges

	Bombe Machine
	Enigma Exploits
	Bombe's algorithm
	Input
	Processing
	Output
	Challenges

	Code

	Discussion
	Future Work

